• 1  Duverger O, Morasso MI. To grow or not to grow: Hair morphogenesis and human genetic hair disorders. Semin Cell Dev Biol 2014;2526:22–33. Pubmed link
  • 2  Betz RC, Cabral RM, Christiano AM, et al. Unveiling the roots of monogenic genodermatoses: genotrichoses as a paradigm. J Invest Dermatol 2012;132:90614. Cross Ref link Pubmed link
  • 3  Botchkarev VA, Kishimoto J. Molecular control of epithelial–mesenchymal interactions during hair follicle cycling. J Invest Derm Symp P 2003;8:4655. Cross Ref link
  • 4  Jamora C, DasGupta R, Kocieniewski P, et al. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003;422:31722. Cross Ref link Pubmed link
  • 5  Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med 1999;341:4917. Cross Ref link Pubmed link
  • 6  Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev 2001;81:44994. Pubmed link
  • 7  Firooz A, Firoozabadi MR, Ghazisaidi B, et al. Concepts of patients with alopecia areata about their disease. BMC Dermatol 2005;5:1. Cross Ref link Pubmed link
  • 8  Hadshiew IM, Foitzik K, Arck PC, et al. Burden of hair loss: stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J Invest Dermatol 2004;123:4557. Cross Ref link Pubmed link
  • 9  Leavitt M. Understanding and management of female pattern alopecia. Facial Plast Surg 2008;24:41427. Cross Ref link Pubmed link
  • 10  Ruiz‐Doblado S, Carrizosa A, Garcia‐Hernandez MJ. Alopecia areata: psychiatric comorbidity and adjustment to illness. Int J Dermatol 2003;42:4347. Cross Ref link Pubmed link
  • 11  Williamson D, Gonzalez M, Finlay AY. The effect of hair loss on quality of life. J Eur Acad Dermatol Venereol 2001;15:1379. Cross Ref link Pubmed link
  • 12  Tadin M, Braverman E, Cianfarani S, et al. Complex cytogenetic rearrangement of chromosome 8q in a case of Ambras syndrome. Am J Med Genet 2001;102:1004. Cross Ref link Pubmed link
  • 13  Fantauzzo KA, Tadin‐Strapps M, You Y, et al. A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice. Hum Mol Genet 2008;17:353951. Cross Ref link Pubmed link
  • 14  Canun S, Guevara‐Sangines EG, Elvira‐Morales A, et al. Hypertrichosis terminalis, gingival hyperplasia, and a characteristic face: a new distinct entity. Am J Med Genet A 2003;116A:27883. Cross Ref link Pubmed link
  • 15  Sun M, Li N, Dong W, et al. Copy‐number mutations on chromosome 17q24.2‐q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. Am J Hum Genet 2009;84:80713. Cross Ref link Pubmed link
  • 16  DeStefano GM, Kurban M, Anyane‐Yeboa K, et al. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth. PLoS Genet 2014;10:e1004333. Cross Ref link Pubmed link
  • 17  Lazalde B, Sanchez‐Urbina R, Nuno‐Arana I, et al. Autosomal dominant inheritance in Cantu syndrome (congenital hypertrichosis, osteochondrodysplasia, and cardiomegaly). Am J Med Genet 2000;94:4217. Cross Ref link Pubmed link
  • 18  Harakalova M, van Harssel JJ, Terhal PA, et al. Dominant missense mutations in ABCC9 cause Cantu syndrome. Nat Genet 2012;44:7936. Cross Ref link Pubmed link
  • 19  van Bon BW, Gilissen C, Grange DK, et al. Cantu syndrome is caused by mutations in ABCC9. Am J Hum Genet 2012;90:1094101. Cross Ref link Pubmed link
  • 20  Shorter K, Farjo NP, Picksley SM, et al. Human hair follicles contain two forms of ATP‐sensitive potassium channels, only one of which is sensitive to minoxidil. FASEB J 2008;22:172536. Cross Ref link Pubmed link
  • 21  Martinez de Lagran Z, Gonzalez‐Perez R, Asuncion Arregui‐Murua M, et al. Hypertrichosis cubiti: another case of a well‐recognized but under‐reported entity. Pediatr Dermatol 2010;27:31011. Cross Ref link Pubmed link
  • 22  Reddy St, Antaya RJ. Two cases of isolated anterior cervical hypertrichosis. Pediatr Dermatol 2010;27:5313. Cross Ref link Pubmed link
  • 23  Harrington BC. The hair collar sign as a marker for neural tube defects. Pediatr Dermatol 2007;24:13840. Cross Ref link Pubmed link
  • 24  Stevens CA, Galen W. The hair collar sign. Am J Med Genet A 2008;146A:4847. Cross Ref link Pubmed link
  • 25  Chander R, Jain A, Jaykar K, et al. Faun tail nevus with aplasia cutis congenita. Pediatr Dermatol 2009;26:4845. Cross Ref link Pubmed link
  • 26  Kaptanoglu AF, Kaptanoglu E. Faun tail nevus and spinal dysraphism: cosmetic improvement with alexandrite laser epilation. Ann Dermatol 2011;23:S2968. Cross Ref link Pubmed link
  • 27  Molho‐Pessach V, Ramot Y, Camille F, et al. H syndrome: the first 79 patients. J Am Acad Dermatol 2014;70:808. Cross Ref link Pubmed link
  • 28  Senniappan S, Hughes M, Shah P, et al. Pigmentary hypertrichosis and non‐autoimmune insulin‐dependent diabetes mellitus (PHID) syndrome is associated with severe chronic inflammation and cardiomyopathy, and represents a new monogenic autoinflammatory syndrome. J Pediatr Endocrinol Metab 2013;26:87782. Cross Ref link Pubmed link
  • 29  Cliffe ST, Kramer JM, Hussain K, et al. SLC29A3 gene is mutated in pigmented hypertrichosis with insulin‐dependent diabetes mellitus syndrome and interacts with the insulin signaling pathway. Hum Mol Genet 2009;18:225765. Cross Ref link Pubmed link
  • 30  Molho‐Pessach V, Lerer I, Abeliovich D, et al. The H syndrome is caused by mutations in the nucleoside transporter hENT3. Am J Hum Genet 2008;83:52934. Cross Ref link Pubmed link
  • 31  Colmenero I, Molho‐Pessach V, Torrelo A, et al. Emperipolesis: an additional common histopathologic finding in H syndrome and Rosai–Dorfman disease. Am J Dermatopathol 2012;34:31520. Cross Ref link Pubmed link
  • 32  Slee PH, van der Waal RI, Schagen van Leeuwen JH, et al. Paraneoplastic hypertrichosis lanuginosa acquisita: uncommon or overlooked? Br J Dermatol 2007;157:108792. Cross Ref link Pubmed link
  • 33  Rajpar SF, Hague JS, Abdullah A, et al. Hair removal with the long‐pulse alexandrite and long‐pulse Nd:YAG lasers is safe and well tolerated in children. Clin Exp Dermatol 2009;34:6847. Cross Ref link Pubmed link
  • 34  Cuestas‐Carnero R, Bornancini CA. Hereditary generalized gingival fibromatosis associated with hypertrichosis: report of five cases in one family. J Oral Maxillofac Surg 1988;46:41520. Cross Ref link Pubmed link
  • 35  Sprecher E, Bergman R, Szargel R, et al. Identification of a genetic defect in the hairless gene in atrichia with papular lesions: evidence for phenotypic heterogeneity among inherited atrichias. Am J Hum Genet 1999;64:13239. Cross Ref link Pubmed link
  • 36  Ahmad W, Panteleyev AA, Christiano AM. The molecular basis of congenital atrichia in humans and mice: mutations in the hairless gene. J Invest Derm Symp P 1999;4:2403. Cross Ref link
  • 37  Cichon S, Anker M, Vogt IR, et al. Cloning, genomic organization, alternative transcripts and mutational analysis of the gene responsible for autosomal recessive universal congenital alopecia. Hum Mol Genet 1998;7:16719. Cross Ref link Pubmed link
  • 38  Bergman R, Schein‐Goldshmid R, Hochberg Z, et al. The alopecias associated with vitamin D‐dependent rickets type IIA and with hairless gene mutations: a comparative clinical, histologic, and immunohistochemical study. Arch Dermatol 2005;141:34351. Cross Ref link Pubmed link
  • 39  Ahmad W, Faiyaz ul Haque M, Brancolini V, et al. Alopecia universalis associated with a mutation in the human hairless gene. Science 1998;279:7204. Cross Ref link Pubmed link
  • 40  Liu L, Kim H, Casta A, et al. Hairless is a histone H3K9 demethylase. FASEB J 2014;28:153442. Cross Ref link Pubmed link
  • 41  Thompson CC, Sisk JM, Beaudoin GM, 3rd. Hairless and Wnt signaling: allies in epithelial stem cell differentiation. Cell Cycle 2006;5:191317. Cross Ref link Pubmed link
  • 42  Luke CT, Casta A, Kim H, et al. Hairless and the polyamine putrescine form a negative regulatory loop in the epidermis. Exp Dermatol 2013;22:6449. Cross Ref link Pubmed link
  • 43  Hsieh JC, Sisk JM, Jurutka PW, et al. Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. J Biol Chem 2003;278:3866574. Cross Ref link Pubmed link
  • 44  Panteleyev AA, Paus R, Christiano AM. Patterns of hairless (hr) gene expression in mouse hair follicle morphogenesis and cycling. Am J Pathol 2000;157:10719. Cross Ref link Pubmed link
  • 45  Wen Y, Liu Y, Xu Y, et al. Loss‐of‐function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nat Genet 2009;41:22833. Cross Ref link Pubmed link
  • 46  Argenziano G, Sammarco E, Rossi A, et al. Marie Unna hereditary hypotrichosis. Eur J Dermatol 1999;9:27880. Pubmed link
  • 47  Malloy PJ, Zhu W, Zhao XY, et al. A novel inborn error in the ligand‐binding domain of the vitamin D receptor causes hereditary vitamin D‐resistant rickets. Mol Genet Metab 2001;73:13848. Cross Ref link Pubmed link
  • 48  Malloy PJ, Feldman D. The role of vitamin D receptor mutations in the development of alopecia. Mol Cell Endocrinol 2011;347:906. Cross Ref link Pubmed link
  • 49  Parren LJ, Abuzahra F, Wagenvoort T, et al. Linkage refinement of Bazex–Dupre–Christol syndrome to an 11.4‐Mb interval on chromosome Xq25‐27.1. Br J Dermatol 2011;165:2013. Cross Ref link Pubmed link
  • 50  Goeteyn M, Geerts ML, Kint A, et al. The Bazex–Dupre–Christol syndrome. Arch Dermatol 1994;130:33742. Cross Ref link Pubmed link
  • 51  Parren LJ, Frank J. Hereditary tumour syndromes featuring basal cell carcinomas. Br J Dermatol 2011;165:304. Cross Ref link Pubmed link
  • 52  Wheeler CE, Jr., Carroll MA, Groben PA, et al. Autosomal dominantly inherited generalized basaloid follicular hamartoma syndrome: report of a new disease in a North Carolina family. J Am Acad Dermatol 2000;43:189206. Cross Ref link Pubmed link
  • 53  Manouvrier‐Hanu S, Largilliere C, Benalioua M, et al. The GAPO syndrome. Am J Med Genet 1987;26:6838. Cross Ref link Pubmed link
  • 54  Stranecky V, Hoischen A, Hartmannova H, et al. Mutations in ANTXR1 cause GAPO syndrome. Am J Hum Genet 2013;92:7929. Cross Ref link Pubmed link
  • 55  Nicolaidou P, Tsitsika A, Papadimitriou A, et al. Hereditary vitamin D‐resistant rickets in Greek children: genotype, phenotype, and long‐term response to treatment. J Pediatr Endocrinol Metab 2007;20:42530. Cross Ref link Pubmed link
  • 56  Megarbane H, Megarbane A. Ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome. Orphanet J Rare Dis 2011;6:29. Cross Ref link Pubmed link
  • 57  Naiki M, Mizuno S, Yamada K, et al. MBTPS2 mutation causes BRESEK/BRESHECK syndrome. Am J Med Genet A 2012;158A:97102. Cross Ref link Pubmed link
  • 58  Herd RM, Benton EC. Keratosis follicularis spinulosa decalvans: report of a new pedigree. Br J Dermatol 1996;134:13842. Cross Ref link Pubmed link
  • 59  Aten E, Brasz LC, Bornholdt D, et al. Keratosis follicularis spinulosa decalvans is caused by mutations in MBTPS2. Hum Mutat 2010;31:112533. Cross Ref link Pubmed link
  • 60  Oeffner F, Fischer G, Happle R, et al. IFAP syndrome is caused by deficiency in MBTPS2, an intramembrane zinc metalloprotease essential for cholesterol homeostasis and ER stress response. Am J Hum Genet 2009;84:45967. Cross Ref link Pubmed link
  • 61  Rawson RB. The site‐2 protease. Biochim Biophys Acta 2013;1828:28017. Cross Ref link Pubmed link
  • 62  Tang L, Liang J, Wang W, et al. A novel mutation in MBTPS2 causes a broad phenotypic spectrum of ichthyosis follicularis, atrichia, and photophobia syndrome in a large Chinese family. J Am Acad Dermatol 2011;64:71622. Cross Ref link Pubmed link
  • 63  Traboulsi E, Waked N, Megarbane H, et al. Ocular findings in ichthyosis follicularis–alopecia–photophobia (IFAP) syndrome. Ophthalmic Genet 2004;25:1536. Cross Ref link Pubmed link
  • 64  Khandpur S, Bhat R, Ramam M. Ichthyosis follicularis, alopecia and photophobia (IFAP) syndrome treated with acitretin. J Eur Acad Dermatol Venereol 2005;19:75962. Cross Ref link Pubmed link
  • 65  Ming A, Happle R, Grzeschik KH, et al. Ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome due to mutation of the gene MBTPS2 in a large Australian kindred. Pediatr Dermatol 2009;26:42731. Cross Ref link Pubmed link
  • 66  Shimomura Y, Agalliu D, Vonica A, et al. APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature 2010;464:10437. Cross Ref link Pubmed link
  • 67  Fu J, Hsu W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. J Invest Dermatol 2013;133:8908. Cross Ref link Pubmed link
  • 68  Myung PS, Takeo M, Ito M, et al. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J Invest Dermatol 2013;133:3141. Cross Ref link Pubmed link
  • 69  Levy‐Nissenbaum E, Betz RC, Frydman M, et al. Hypotrichosis simplex of the scalp is associated with nonsense mutations in CDSN encoding corneodesmosin. Nat Genet 2003;34:1513. Cross Ref link Pubmed link
  • 70  Oji V, Eckl KM, Aufenvenne K, et al. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. Am J Hum Genet 2010;87:27481. Cross Ref link Pubmed link
  • 71  Capon F, Allen MH, Ameen M, et al. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum Mol Genet 2004;13:23618. Cross Ref link Pubmed link
  • 72  Capon F, Munro M, Barker J, et al. Searching for the major histocompatibility complex psoriasis susceptibility gene. J Invest Dermatol 2002;118:74551. Cross Ref link Pubmed link
  • 73  Caubet C, Bousset L, Clemmensen O, et al. A new amyloidosis caused by fibrillar aggregates of mutated corneodesmosin. FASEB J 2010;24:341626. Cross Ref link Pubmed link
  • 74  Sprecher E. Genetic hair and nail disorders. Clin Dermatol 2005;23:4755. Cross Ref link Pubmed link
  • 75  Shimomura Y, Wajid M, Petukhova L, et al. Mutations in the lipase H gene underlie autosomal recessive woolly hair/hypotrichosis. J Invest Dermatol 2009;129:6228. Cross Ref link Pubmed link
  • 76  Shimomura Y. Congenital hair loss disorders: rare, but not too rare. J Dermatol 2012;39:310. Cross Ref link Pubmed link
  • 77  Kazantseva A, Goltsov A, Zinchenko R, et al. Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science 2006;314:9825. Cross Ref link Pubmed link
  • 78  Pasternack SM, von Kugelgen I, Al Aboud K, et al. G protein‐coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 2008;40:32934. Cross Ref link Pubmed link
  • 79  Shimomura Y, Wajid M, Ishii Y, et al. Disruption of P2RY5, an orphan G protein‐coupled receptor, underlies autosomal recessive woolly hair. Nat Genet 2008;40:3359. Cross Ref link Pubmed link
  • 80  Pasternack SM, von Kugelgen I, Muller M, et al. In vitro analysis of LIPH mutations causing hypotrichosis simplex: evidence confirming the role of lipase H and lysophosphatidic acid in hair growth. J Invest Dermatol 2009;129:27726. Cross Ref link Pubmed link
  • 81  Carrington PR, Chen H, Altick JA. Trichorhinophalangeal syndrome, type I. J Am Acad Dermatol 1994;31:3316. Cross Ref link Pubmed link
  • 82  Momeni P, Glockner G, Schmidt O, et al. Mutations in a new gene, encoding a zinc‐finger protein, cause tricho‐rhino‐phalangeal syndrome type I. Nat Genet 2000;24:714. Cross Ref link Pubmed link
  • 83  Ludecke HJ, Schaper J, Meinecke P, et al. Genotypic and phenotypic spectrum in tricho‐rhino‐phalangeal syndrome types I and III. Am J Hum Genet 2001;68:8191. Cross Ref link Pubmed link
  • 84  Langer LO Jr, Krassikoff N, Laxova R, et al. The tricho‐rhino‐phalangeal syndrome with exostoses (or Langer–Giedion syndrome): four additional patients without mental retardation and review of the literature. Am J Med Genet 1984;19:81112. Cross Ref link Pubmed link
  • 85  Ludecke HJ, Johnson C, Wagner MJ, et al. Molecular definition of the shortest region of deletion overlap in the Langer–Giedion syndrome. Am J Hum Genet 1991;49:1197206. Pubmed link
  • 86  Lai‐Cheong JE, Arita K, McGrath JA. Genetic diseases of junctions. J Invest Dermatol 2007;127:271325. Cross Ref link Pubmed link
  • 87  Mazereeuw‐Hautier J, Bitoun E, Chevrant‐Breton J, et al. Keratitis–ichthyosis–deafness syndrome: disease expression and spectrum of connexin 26 (GJB2) mutations in 14 patients. Br J Dermatol 2007;156:101519. Cross Ref link Pubmed link
  • 88  Lamartine J, Munhoz Essenfelder G, Kibar Z, et al. Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nat Genet 2000;26:1424. Cross Ref link Pubmed link
  • 89  Paznekas WA, Boyadjiev SA, Shapiro RE, et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 2003;72:40818. Cross Ref link Pubmed link
  • 90  Paznekas WA, Karczeski B, Vermeer S, et al. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum Mutat 2009;30:72433. Cross Ref link Pubmed link
  • 91  Souied E, Amalric P, Chauvet ML, et al. Unusual association of juvenile macular dystrophy with congenital hypotrichosis: occurrence in two siblings suggesting autosomal recessive inheritance. Ophthalmic Genet 1995;16:1115. Cross Ref link Pubmed link
  • 92  Sprecher E, Bergman R, Richard G, et al. Hypotrichosis with juvenile macular dystrophy is caused by a mutation in CDH3, encoding P‐cadherin. Nat Genet 2001;29:1346. Cross Ref link Pubmed link
  • 93  Burke JM, Cao F, Irving PE, et al. Expression of E‐cadherin by human retinal pigment epithelium: delayed expression in vitro. Invest Ophthalmol Vis Sci 1999;40:296370. Pubmed link
  • 94  Samuelov L, Sprecher E, Sugawara K, et al. Topobiology of human pigmentation: P‐cadherin selectively stimulates hair follicle melanogenesis. J Invest Dermatol 2013;133:1591600. Cross Ref link Pubmed link
  • 95  Samuelov L, Sprecher E, Tsuruta D, et al. P‐cadherin regulates human hair growth and cycling via canonical Wnt signaling and transforming growth factor‐beta2. J Invest Dermatol 2012;132:233241. Cross Ref link Pubmed link
  • 96  Kjaer KW, Hansen L, Schwabe GC, et al. Distinct CDH3 mutations cause ectodermal dysplasia, ectrodactyly, macular dystrophy (EEM syndrome). J Med Genet 2005;42:2928. Cross Ref link Pubmed link
  • 97  Basel‐Vanagaite L, Attia R, Ishida‐Yamamoto A, et al. Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. Am J Hum Genet 2007;80:46777. Cross Ref link Pubmed link
  • 98  List K, Bugge TH, Szabo R. Matriptase: potent proteolysis on the cell surface. Mol Med 2006;12:17. Cross Ref link Pubmed link
  • 99  Chen YW, Wang JK, Chou FP, et al. Matriptase regulates proliferation and early, but not terminal, differentiation of human keratinocytes. J Invest Dermatol 2014;134:40514. Cross Ref link Pubmed link
  • 100  Alef T, Torres S, Hausser I, et al. Ichthyosis, follicular atrophoderma, and hypotrichosis caused by mutations in ST14 is associated with impaired profilaggrin processing. J Invest Dermatol 2009;129:8629. Cross Ref link Pubmed link
  • 101  Cheng AS, Bayliss SJ. The genetics of hair shaft disorders. J Am Acad Dermatol 2008;59:1–22;quiz 36. Cross Ref link
  • 102  Miteva M, Tosti A. Dermatoscopy of hair shaft disorders. J Am Acad Dermatol 2013;68:47381. Cross Ref link Pubmed link
  • 103  Zlotogorski A, Horev L, Glaser B. Monilethrix: a keratin hHb6 mutation is co‐dominant with variable expression. Exp Dermatol 1998;7:26872. Cross Ref link Pubmed link
  • 104  Winter H, Rogers MA, Gebhardt M, et al. A new mutation in the type II hair cortex keratin hHb1 involved in the inherited hair disorder monilethrix. Hum Genet 1997;101:1659. Cross Ref link Pubmed link
  • 105  Winter H, Rogers MA, Langbein L, et al. Mutations in the hair cortex keratin hHb6 cause the inherited hair disease monilethrix. Nat Genet 1997;16:3724. Cross Ref link Pubmed link
  • 106  van Steensel MA, Steijlen PM, Bladergroen RS, et al. A missense mutation in the type II hair keratin hHb3 is associated with monilethrix. J Med Genet 2005;42:e19. Cross Ref link Pubmed link
  • 107  Schweizer J. More than one gene involved in monilethrix: intracellular but also extracellular players. J Invest Dermatol 2006;126:121619. Cross Ref link Pubmed link
  • 108  Taylor CJ, Green SH. Menkes' syndrome (trichopoliodystrophy): use of scanning electron‐microscope in diagnosis and carrier identification. Dev Med Child Neurol 1981;23:3618. Cross Ref link Pubmed link
  • 109  Zitelli JA. Pseudomonilethrix. An artifact. Arch Dermatol 1986;122:68890. Cross Ref link Pubmed link
  • 110  Rossi A, Iorio A, Scali E, et al. Monilethrix treated with minoxidil. Int J Immunopathol Pharmacol 2011;24:23942. Pubmed link
  • 111  Saxena U, Ramesh V, Misra RS. Topical minoxidil in monilethrix. Dermatologica 1991;182:2523. Cross Ref link Pubmed link
  • 112  de Berker D, Dawber RP. Monilethrix treated with oral retinoids. Clin Exp Dermatol 1991;16:2268. Cross Ref link Pubmed link
  • 113  Karincaoglu Y, Coskun BK, Seyhan ME, et al. Monilethrix: improvement with acitretin. Am J Clin Dermatol 2005;6:40710. Cross Ref link Pubmed link
  • 114  Sivasundram A. A case of monilethrix treated with etretinate. Dermatology 1995;190:89. Cross Ref link Pubmed link
  • 115  Brooke MA, Nitoiu D, Kelsell DP. Cell–cell connectivity: desmosomes and disease. J Pathol 2012;226:15871. Cross Ref link Pubmed link
  • 116  Neild VS, Pegum JS, Wells RS. The association of keratosis pilaris atrophicans and woolly hair, with and without Noonan's syndrome. Br J Dermatol 1984;110:35762. Cross Ref link Pubmed link
  • 117  Fujimoto A, Farooq M, Fujikawa H, et al. A missense mutation within the helix initiation motif of the keratin K71 gene underlies autosomal dominant woolly hair/hypotrichosis. J Invest Dermatol 2012;132:23429. Cross Ref link Pubmed link
  • 118  Shimomura Y, Wajid M, Petukhova L, et al. Autosomal‐dominant woolly hair resulting from disruption of keratin 74 (KRT74), a potential determinant of human hair texture. Am J Hum Genet 2010;86:6328. Cross Ref link Pubmed link
  • 119  McKoy G, Protonotarios N, Crosby A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 2000;355:211924. Cross Ref link Pubmed link
  • 120  Norgett EE, Hatsell SJ, Carvajal‐Huerta L, et al. Recessive mutation in desmoplakin disrupts desmoplakin‐intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000;9:27616. Cross Ref link Pubmed link
  • 121  Collie WR, Moore CM, Goka TJ, et al. Pili torti as marker for carriers of Menkes disease. Lancet 1978;1:6078. Cross Ref link Pubmed link
  • 122  Tumer Z, Moller LB. Menkes disease. Eur J Hum Genet 2010;18:51118. Cross Ref link Pubmed link
  • 123  Chelly J, Tumer Z, Tonnesen T, et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 1993;3:1419. Cross Ref link Pubmed link
  • 124  Vulpe C, Levinson B, Whitney S, et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper‐transporting ATPase. Nat Genet 1993;3:713. Cross Ref link Pubmed link
  • 125  Tumer Z. An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat 2013;34:41729. Cross Ref link Pubmed link
  • 126  Scott MJ Jr, Bronson DM, Esterly NB. Bjornstad syndrome and pili torti. Pediatr Dermatol 1983;1:4550. Cross Ref link Pubmed link
  • 127  Hinson JT, Fantin VR, Schonberger J, et al. Missense mutations in the BCS1L gene as a cause of the Bjornstad syndrome. N Engl J Med 2007;356:80919. Cross Ref link Pubmed link
  • 128  Sprecher E, Chavanas S, DiGiovanna JJ, et al. The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: implications for mutation detection and first case of prenatal diagnosis. J Invest Dermatol 2001;117:17987. Cross Ref link Pubmed link
  • 129  Glaessl A, Hohenlautner U, Landthaler M, et al. Sporadic Bazex–Dupre–Christol‐like syndrome: early onset basal cell carcinoma, hypohidrosis, hypotrichosis, and prominent milia. Dermatol Surg 2000;26:1524. Cross Ref link Pubmed link
  • 130  Patel HP, Unis ME. Pili torti in association with citrullinemia. J Am Acad Dermatol 1985;12:2036. Cross Ref link Pubmed link
  • 131  Karadag Kose O, Gulec AT. Clinical evaluation of alopecias using a handheld dermatoscope. J Am Acad Dermatol 2012;67:20614. Cross Ref link Pubmed link
  • 132  Burkhart CG, Burkhart CN. Trichorrhexis nodosa revisited. Skinmed 2007;6:578. Cross Ref link Pubmed link
  • 133  Fabre A, Andre N, Breton A, et al. Intractable diarrhea with “phenotypic anomalies” and tricho‐hepato‐enteric syndrome: two names for the same disorder. Am J Med Genet A 2007;143:5848. Cross Ref link
  • 134  Fichtel JC, Richards JA, Davis LS. Trichorrhexis nodosa secondary to argininosuccinicaciduria. Pediatr Dermatol 2007;24:257. Cross Ref link Pubmed link
  • 135  Lurie R, Hodak E, Ginzburg A, et al. Trichorrhexis nodosa: a manifestation of hypothyroidism. Cutis 1996;57:3589. Pubmed link
  • 136  Liang C, Morris A, Schlucker S, et al. Structural and molecular hair abnormalities in trichothiodystrophy. J Invest Dermatol 2006;126:221016. Cross Ref link Pubmed link
  • 137  Stone RL, Aimi J, Barshop BA, et al. A mutation in adenylosuccinate lyase associated with mental retardation and autistic features. Nat Genet 1992;1:5963. Cross Ref link Pubmed link
  • 138  Fabre A, Charroux B, Martinez‐Vinson C, et al. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet 2012;90:68992. Cross Ref link Pubmed link
  • 139  Hartley JL, Zachos NC, Dawood B, et al. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology 2010;138:238898, 98 e1–2. Cross Ref link Pubmed link
  • 140  Frenk E, Mevorah B. Ichthyosis linearis circumflexa comel with trichorrhexis invaginata (Netherton's syndrome): an ultrastructural study of the skin changes. Arch Dermatol Forsch 1972;245:429. Cross Ref link Pubmed link
  • 141  Gyure KA, Kurczynski TW, Gunning W, et al. Autosomal recessive neurodegenerative disorder with trichorrhexis invaginata and ectodermal dysplasia. Pediatr Neurol 1992;8:46972. Cross Ref link Pubmed link
  • 142  Powell J, Dawber RP, Ferguson DJ, et al. Netherton's syndrome: increased likelihood of diagnosis by examining eyebrow hairs. Br J Dermatol 1999;141:5446. Cross Ref link Pubmed link
  • 143  Chavanas S, Bodemer C, Rochat A, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 2000;25:1412. Cross Ref link Pubmed link
  • 144  Hovnanian A. Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res 2013;351:289300. Cross Ref link Pubmed link
  • 145  Samuelov L, Sarig O, Harmon RM, et al. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat Genet 2013;45:12448. Cross Ref link Pubmed link
  • 146  Liang C, Kraemer KH, Morris A, et al. Characterization of tiger‐tail banding and hair shaft abnormalities in trichothiodystrophy. J Am Acad Dermatol 2005;52:22432. Cross Ref link Pubmed link
  • 147  Itin PH, Sarasin A, Pittelkow MR. Trichothiodystrophy: update on the sulfur‐deficient brittle hair syndromes. J Am Acad Dermatol 2001;44:891920;quiz 1–4. Cross Ref link Pubmed link
  • 148  Nakabayashi K, Amann D, Ren Y, et al. Identification of C7orf11 (TTDN1) gene mutations and genetic heterogeneity in nonphotosensitive trichothiodystrophy. Am J Hum Genet 2005;76:51016. Cross Ref link Pubmed link
  • 149  Seroz T, Hwang JR, Moncollin V, et al. TFIIH: a link between transcription, DNA repair and cell cycle regulation. Curr Opin Genet Dev 1995;5:21721. Cross Ref link Pubmed link
  • 150  Takayama K, Salazar EP, Broughton BC, et al. Defects in the DNA repair and transcription gene ERCC2(XPD) in trichothiodystrophy. Am J Hum Genet 1996;58:26370. Pubmed link
  • 151  Weeda G, Eveno E, Donker I, et al. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am J Hum Genet 1997;60:3209. Pubmed link
  • 152  Giglia‐Mari G, Coin F, Ranish JA, et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 2004;36:71419. Cross Ref link Pubmed link
  • 153  Calderon P, Otberg N, Shapiro J. Uncombable hair syndrome. J Am Acad Dermatol 2009;61:51215. Cross Ref link Pubmed link
  • 154  Hicks J, Metry DW, Barrish J, et al. Uncombable hair (cheveux incoiffables, pili trianguli et canaliculi) syndrome: brief review and role of scanning electron microscopy in diagnosis. Ultrastruct Pathol 2001;25:99103. Cross Ref link Pubmed link
  • 155  Hebert AA, Charrow J, Esterly NB, et al. Uncombable hair (pili trianguli et canaliculi): evidence for dominant inheritance with complete penetrance based on scanning electron microscopy. Am J Med Genet 1987;28:18593. Cross Ref link Pubmed link
  • 156  Amichai B, Grunwald MH, Halevy S. Hair abnormality present since childhood. Pili annulati. Arch Dermatol 1996;132:575, 8. Cross Ref link Pubmed link
  • 157  Price VH, Thomas RS, Jones FT. Pili annulati. Optical and electron microscopic studies. Arch Dermatol 1968;98:6407. Cross Ref link Pubmed link
  • 158  Giehl KA, Rogers MA, Radivojkov M, et al. Pili annulati: refinement of the locus on chromosome 12q24.33 to a 2.9‐Mb interval and candidate gene analysis. Br J Dermatol 2009;160:52733. Cross Ref link Pubmed link
  • 159  Olsen EA, Bettencourt MS, Cote NL. The presence of loose anagen hairs obtained by hair pull in the normal population. J Invest Derm Symp P 1999;4:25860. Cross Ref link
  • 160  Tosti A, Peluso AM, Misciali C, et al. Loose anagen hair. Arch Dermatol 1997;133:108993. Cross Ref link Pubmed link
  • 161  Chapalain V, Winter H, Langbein L, et al. Is the loose anagen hair syndrome a keratin disorder? A clinical and molecular study. Arch Dermatol 2002;138:5016. Cross Ref link Pubmed link
  • 162  Cordeddu V, Di Schiavi E, Pennacchio LA, et al. Mutation of SHOC2 promotes aberrant protein N‐myristoylation and causes Noonan‐like syndrome with loose anagen hair. Nat Genet 2009;41:10226. Cross Ref link Pubmed link
  • 163  Antaya RJ, Sideridou E, Olsen EA. Short anagen syndrome. J Am Acad Dermatol 2005;53:S1304. Cross Ref link Pubmed link
  • 164  Price JA, Bowden DW, Wright JT, et al. Identification of a mutation in DLX3 associated with tricho‐dento‐osseous (TDO) syndrome. Hum Mol Genet 1998;7:5639. Cross Ref link Pubmed link
  • 165  Price JA, Wright JT, Kula K, et al. A common DLX3 gene mutation is responsible for tricho‐dento‐osseous syndrome in Virginia and North Carolina families. J Med Genet 1998;35:8258. Cross Ref link Pubmed link
  • 166  Kjaer KW, Hansen L, Eiberg H, et al. Novel Connexin 43 (GJA1) mutation causes oculo‐dento‐digital dysplasia with curly hair. Am J Med Genet A 2004;127A:1527. Cross Ref link Pubmed link
  • 167  Tazir M, Nouioua S, Magy L, et al. Phenotypic variability in giant axonal neuropathy. Neuromuscul Disord 2009;19:2704. Cross Ref link Pubmed link
  • 168  Carre A, Hamza RT, Kariyawasam D, et al. A novel FOXE1 mutation (R73S) in Bamforth–Lazarus syndrome causing increased thyroidal gene expression. Thyroid 2014;24:64954. Cross Ref link Pubmed link
  • 169  Clifton‐Bligh RJ, Wentworth JM, Heinz P, et al. Mutation of the gene encoding human TTF‐2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet 1998;19:399401. Cross Ref link Pubmed link
  • 170  Brancaccio A, Minichiello A, Grachtchouk M, et al. Requirement of the forkhead gene Foxe1, a target of sonic hedgehog signaling, in hair follicle morphogenesis. Hum Mol Genet 2004;13:2595606. Cross Ref link Pubmed link