Hypopigmentation disorders

    Piebaldism

    • 1  Thomas I, Kihiczak GG, Fox MD, Janniger CK, Schwartz RA. Piebaldism: an update. Int J Dermatol 2004;43:71619. Cross Ref link Pubmed link
    • 2  Spritz RA, Holmes SA, Ramesar R, Greenberg J, Curtis D, Beighton P. Mutations of the KIT (mast/stem cell growth factor receptor) proto‐oncogene account for a continuous range of phenotypes in human piebaldism. Am J Hum Genet 1992;51:105865.** Pubmed link
    • 3  Sánchez‐Martín M, Pérez‐Losada J, Rodríguez‐García A, et al. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A 2003;122A(2):12532. Cross Ref link Pubmed link
    • 4  Sijmons RH, Kristoffersson U, Tuerlings JH, Ljung R, Dijkhuis‐Stoffelsma R, Breed AS. Piebaldism in a mentally retarded girl with rare deletion of the long arm of chromosome 4. Pediatr Dermatol 1993;10:2359. Cross Ref link Pubmed link
    • 5  Van Geel N, Wallaeys E, Goh BK, De Mil M, Lambert J. Long term results of non cultured epidermal cellular grafting in vitiligo, halo nevi, piebaldism and nevus depigmentosus. Br J Dermatol 2010;163:118693. Cross Ref link Pubmed link

    Waardenburg syndrome

    • 6  Kubic JD, Young KP, Plummer RS, Ludvik AE, Lang D. Pigmentation PAX‐ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res 2008;21:62745. Cross Ref link Pubmed link
    • 7  Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet1994;8:2515. ** Cross Ref link Pubmed link
    • 8  Sánchez‐Martín M, Rodríguez‐García A, Pérez‐Losada J, Sagrera A, Read AP, Sánchez‐García I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002;11:32316. Cross Ref link Pubmed link
    • 9  Tomita Y, Suzuki T. Genetics of pigmentary disorders. Am J Med Genet C 2004;131C:7581. Cross Ref link
    • 10  Tamayo ML, Gelvez N, Rodriguez M, et al. Screening program for Waardenburg syndrome in Colombia: clinical definition and phenotypic variability. Am J Med Genet A 2008;146A:102631. Cross Ref link Pubmed link

    Oculocutaneous albinism

    • 11  Tomita Y, Suzuki T. Genetics of pigmentary disorders. Am J Med Genet C Semin Med Genet 2004;131C:7581. Cross Ref link Pubmed link
    • 12  Tomita Y, Takeda A, Okinaga S, Tagami H, Shibahara S. Human oculocutaneous albinism caused by single base insertion in the tyrosinase gene. Biochem Biophys Res Commun 1989;164:9906. ** Cross Ref link Pubmed link
    • 13  Rinchik EM, Bultman SJ, Horsthemke B, et al. A gene for the mouse pink‐eyed dilution locus and for human type II oculocutaneous albinism. Nature 1993;361:726. ** Cross Ref link Pubmed link
    • 14  Manga P, Kromberg JG, Box NF, Sturm RA, Jenkins T, Ramsay M. Rufous oculocutaneous albinism in southern African Blacks is caused by mutations in the TYRP1 gene. Am J Hum Genet 1997;61:1095101. ** Cross Ref link Pubmed link
    • 15  Newton JM, Cohen‐Barak O, Hagiwara N, et al. Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Am J Hum Genet 2001;69:9818. ** Cross Ref link Pubmed link
    • 16  Wei A‐H, Zang D‐J, Zhang Z, et al. Exome sequencing identifies SLC24A5 as a candidate gene for non‐syndromic oculocutaneous albinism. J Invest Dermatol 2013;133:183440. ** Cross Ref link Pubmed link
    • 17  Grønskov K, Dooley CM, Østergaard E, et al. Mutations in c10orf11, a melanocyte‐differentiation gene, cause autosomal‐recessive albinism. Am J Hum Genet 2013;92:41521. ** Cross Ref link Pubmed link
    • 18  Kausar T, Bhatti M, Ali M, Shaikh R, Ahmed Z. OCA5, a novel locus for non‐syndromic oculocutaneous albinism, maps to chromosome 4q24. Clin Genet 2012;84:913. ** Cross Ref link Pubmed link
    • 19  Lavado A, Montoliu L. New animal models to study the role of tyrosinase in normal retinal development. Front Biosci J Virtual Libr 2006;11:74352. Cross Ref link
    • 20  Tomita Y. Tyrosinase gene mutations causing oculocutaneous albinisms. J Invest Dermatol 1993;100(2 Suppl.):186S90S. Cross Ref link Pubmed link
    • 21  Oetting WS, King RA. Molecular basis of type I (tyrosinase‐related) oculocutaneous albinism: mutations and polymorphisms of the human tyrosinase gene. Hum Mutat 1993;2:16. Cross Ref link Pubmed link
    • 22  Summers CG. Albinism: classification, clinical characteristics, and recent findings. Optom Vis Sci 2009;86:65962. Cross Ref link Pubmed link
    • 23  Grønskov K, Ek J, Brondum‐Nielsen K. Oculocutaneous albinism. Orphanet J Rare Dis 2007;2:43. Cross Ref link Pubmed link
    • 24  Kromberg JG, Castle DJ, Zwane EM, et al. Red or rufous albinism in southern Africa. Ophthalmic Paediatr Genet 1990;11:22935. Cross Ref link Pubmed link

    Hermansky–Pudlak syndrome

    • 25  Hermansky F, Pudlak P. Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: report of two cases with histochemical studies. Blood 1959;14:1629. Pubmed link
    • 26  Wei A‐H, Li W. Hermansky–Pudlak syndrome: pigmentary and non‐pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res 2013;26:17692. Cross Ref link Pubmed link
    • 27  Li W, Zhang Q, Oiso N, et al. Hermansky–Pudlak syndrome type 7 (HPS‐7) results from mutant dysbindin, a member of the biogenesis of lysosome‐related organelles complex 1 (BLOC‐1). Nat Genet 2003;35:849. Cross Ref link Pubmed link
    • 28  Morgan NV, Pasha S, Johnson CA, et al. A germline mutation in BLOC1S3/reduced pigmentation causes a novel variant of Hermansky–Pudlak syndrome (HPS8). Am J Hum Genet 2006;78:1606. Cross Ref link Pubmed link
    • 29  Cullinane AR, Curry JA, Carmona‐Rivera C, et al. A BLOC‐1 mutation screen reveals that PLDN is mutated in Hermansky–Pudlak syndrome type 9. Am J Hum Genet 2011;88:77887. Cross Ref link Pubmed link
    • 30  Zhang Q, Zhao B, Li W, et al. Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky–Pudlak syndrome types 5 and 6. Nat Genet 2003;33:14553. Cross Ref link Pubmed link
    • 31  Suzuki T, Li W, Zhang Q, et al. Hermansky–Pudlak syndrome is caused by mutations in HPS4, the human homolog of the mouse light‐ear gene. Nat Genet 2002;30:3214. Pubmed link
    • 32  Anikster Y, Huizing M, White J, et al. Mutation of a new gene causes a unique form of Hermansky–Pudlak syndrome in a genetic isolate of central Puerto Rico. Nat Genet 2001;28:37680. Cross Ref link Pubmed link
    • 33  Huizing M, Scher CD, Strovel E, et al. Nonsense mutations in ADTB3A cause complete deficiency of the beta3A subunit of adaptor complex‐3 and severe Hermansky–Pudlak syndrome type 2. Pediatr Res 2002;51:1508. Cross Ref link Pubmed link
    • 34  Oh J, Bailin T, Fukai K, et al. Positional cloning of a gene for Hermansky–Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet1996;14:3006. Cross Ref link Pubmed link

    Chédiak–Higashi syndrome

    • 35  Shiflett SL, Kaplan J, Ward DM. Chediak–Higashi syndrome: a rare disorder of lysosomes and lysosome related organelles. Pigment Cell Res 2002;15:2517. Cross Ref link Pubmed link
    • 36  Durchfort N, Verhoef S, Vaughn MB, et al. The enlarged lysosomes in beige j cells result from decreased lysosome fission and not increased lysosome fusion. Traffic 2012;13:10819. Cross Ref link Pubmed link
    • 37  Karim MA, Suzuki K, Fukai K, et al. Apparent genotype–phenotype correlation in childhood, adolescent, and adult Chediak–Higashi syndrome. Am J Med Genet 2002;108:1622. ** Cross Ref link Pubmed link
    • 38  Westbroek W, Adams D, Huizing M, et al. Cellular defects in Chediak–Higashi syndrome correlate with the molecular genotype and clinical phenotype. J Invest Dermatol 2007;127:26747. Cross Ref link Pubmed link
    • 39  Introne WJ, Westbroek W, Golas GA, Adams D. Chediak–Higashi syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong C‐T, Stephens K, eds. GeneReviewsTM. Seattle (WA): University of Washington, Seattle, 1993. http://www.ncbi.nlm.nih.gov/books/NBK5188/ (last accessed August 2014).
    • 40  Eapen M, DeLaat CA, Baker KS, et al. Hematopoietic cell transplantation for Chediak–Higashi syndrome. Bone Marrow Transplant 2007;39:41115. Cross Ref link Pubmed link
    • 41  Ogimi C, Tanaka R, Arai T, Kikuchi A, Hanada R, Oh–Ishi T. Rituximab and cyclosporine therapy for accelerated phase Chediak–Higashi syndrome. Pediatr Blood Cancer 2011;57:67780. Cross Ref link Pubmed link

    Griscelli–Pruniéras syndrome

    • 42  Pastural E, Barrat FJ, Dufourcq‐Lagelouse R, et al. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin‐Va gene. Nat Genet 1997;16:28992. ** Cross Ref link Pubmed link
    • 43  Ménasché G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 2000;25:1736. Cross Ref link Pubmed link
    • 44  Ménasché G, Ho CH, Sanal O, et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F‐exon deletion (GS1). J Clin Invest 2003;112:4506. Cross Ref link Pubmed link
    • 45  Griscelli C, Raux M, Attal C, Barthélémy C, Mozziconacci P. [Syndrome associating anemia, hepatomegaly, dwarfism, late puberty and geophagia. Geophagia syndrome]. Ann Pédiatrie 1970;17:21419.
    • 46  Mancini AJ, Chan LS, Paller AS. Partial albinism with immunodeficiency: Griscelli syndrome: report of a case and review of the literature. J Am Acad Dermatol 1998;38(2 Pt 2):295300. Cross Ref link Pubmed link
    • 47  Lambert J, Vancoillie G, Naeyaert JM. Elejalde syndrome revisited. Arch Dermatol 2000;136:1201. Cross Ref link Pubmed link

    Oculocerebral syndrome with hypopigmentation

    • 48  Cross HE, McKusick VA, Breen W. A new oculocerebral syndrome with hypopigmentation. J Pediatr 1967;70:398406**. Cross Ref link Pubmed link

    Albinism–deafness syndrome

    • 49  Margolis E. A new hereditary syndrome – sex linked deafmutism associated with total albinism. Acta Genet Stat Med 1962;12:1219. ** Pubmed link
    • 50  Ziprkowski L, Krakowski A, Adam A, Costeff H, Sade J. Partial albinism and deaf–mutism due to a recessive sex‐linked gene. Arch Dermatol 1962;86:5309. Cross Ref link Pubmed link
    • 51  Shiloh Y, Litvak G, Ziv Y, et al. Genetic mapping of X‐linked albinism–deafness syndrome (ADFN) to Xq26.3‐q27.I. Am J Hum Genet 1990;47:207. Pubmed link

    Hypomelanosis of Ito

    • 52  Ito M. Studies on melanin XI: Incontinentia pigmenti achromians. A singular case of nevus depigmentosus systematicus bilateralis. Tohoku J Exp Med 1952;55:579. **
    • 53  Glover MT, Brett EM, Atherton DJ. Hypomelanosis of Ito: spectrum of the disease. J Pediatr 1989;115:7580. Cross Ref link Pubmed link
    • 54  Ruiz‐Maldonado R, Toussaint S, Tamayo L, Laterza A, del Castillo V. Hypomelanosis of Ito: diagnostic criteria and report of 41 cases. Pediatr Dermatol 1992;9:110. Cross Ref link Pubmed link
    • 55  Nehal KS, PeBenito R, Orlow SJ. Analysis of 54 cases of hypopigmentation and hyperpigmentation along the lines of Blaschko. Arch Dermatol 1996;132:116770. Cross Ref link Pubmed link
    • 56  Ritter CL, Steele MW, Wenger SL, Cohen BA. Chromosome mosaicism in hypomelanosis of Ito. Am J Med Genet 1990;35:1417. Cross Ref link Pubmed link
    • 57  Moss C, Larkins S, Stacey M, et al. Epidermal mosaicism and Blaschko's lines. J Med Genet 1993;30:7525. Cross Ref link Pubmed link

    Hyperpigmentation disorders

      Familial progressive hyperpigmentation

      • 58  Zhang C, Deng Y, Chen X, et al. Linkage of a locus determining familial progressive hyperpigmentation (FPH) to chromosome 19q13.1‐pter in a Chinese family. Eur J Dermatol 2006;16:24650. Pubmed link
      • 59  Wang ZQ, Si L, Tang Q, et al. Gain‐of‐function mutation of KIT ligand on melanin synthesis causes familial progressive hyperpigmentation. Am J Hum Genet 2009;84:6727. ** Cross Ref link Pubmed link
      • 60  Amyere M, Vogt T, Hoo J, et al. KITLG mutations cause familial progressive hyper‐ and hypopigmentation. J Invest Dermatol 2011;131:12349. Cross Ref link Pubmed link

      Incontinentia pigmenti

      • 61  Kenwrick S, Woffendin H, Jakins T, et al. Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am J Hum Genet 2001;69:121017. Cross Ref link Pubmed link
      • 62  Landy SJ, Donnai D. Incontinentia pigmenti (Bloch‐Sulzberger syndrome). J Med Genet 1993;30:539. Cross Ref link Pubmed link
      • 63  Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF‐kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 2000;405:46672. Cross Ref link Pubmed link
      • 64  Smahi A, Courtois G, Rabia SH, et al. The NF‐kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune‐deficiency syndromes. Hum Mol Genet 2002;11:23715. Cross Ref link Pubmed link
      • 65  Steffann J, Raclin V, Smahi A, et al. A novel PCR approach for prenatal detection of the common NEMO rearrangement in incontinentia pigmenti. Prenat Diagn 2004;24:3848. Cross Ref link Pubmed link
      • 66  O'Doherty M, McCreery K, Green AJ, et al. Incontinentia pigmenti: ophthalmological observation of a series of cases and review of the literature. Br J Ophthalmol 2011;95:1116. Cross Ref link Pubmed link

      Linear and whorled naevoid hypermelanosis

      • 67  Kalter DC, Griffiths WA, Atherton DJ. Linear and whorled nevoid hypermelanosis. J Am Acad Dermatol 1988;19:103744. ** Cross Ref link Pubmed link
      • 68  Hong SP, Ahn SY, Lee WS. Linear and whorled nevoid hypermelanosis: unique clinical presentations and their possible association with chromosomal abnormality inv(9). Arch Dermatol 2008;144:41516. Pubmed link

      Dyskeratosis congenita

      • 69  Calado RT, Young NS. Telomere maintenance and human bone marrow failure. Blood 2008;111:444655. Cross Ref link Pubmed link
      • 70  Ding YG, Zhu TS, Jiang W, et al. Identification of a novel mutation and a de novo mutation in DKC1 in two Chinese pedigrees with dyskeratosis congenita. J Invest Dermatol 2004;123:4703. ** Cross Ref link Pubmed link
      • 71  Nelson ND, Bertuch AA. Dyskeratosis congenita as a disorder of telomere maintenance. Mutat Res 2012;730:4351. Cross Ref link Pubmed link
      • 72  Mathew CG. Fanconi anaemia genes and susceptibility to cancer. Oncogene 2006;25:587584. Cross Ref link Pubmed link

      Naegeli–Franceschetti–Jadassohn syndrome and dermatopathia pigmentosa reticularis

      • 73  Lugassy J, Itin P, Ishida‐Yamamoto A, et al. Naegeli–Franceschetti–Jadassohn syndrome and dermatopathia pigmentosa reticularis: two allelic ectodermal dysplasias caused by dominant mutations in KRT14. Am J Hum Genet 2006;79:72430. ** Cross Ref link Pubmed link
      • 74  Lugassy J, McGrath JA, Itin P, et al. KRT14 haploinsufficiency results in increased susceptibility of keratinocytes to TNF‐alpha‐induced apoptosis and causes Naegeli–Franceschetti–Jadassohn syndrome. J Invest Dermatol 2008;128:151724. Cross Ref link Pubmed link
      • 75  Itin PH, Lautenschlager S, Meyer R, Mevorah B, Rufli T. Natural history of the Naegeli–Franceschetti–Jadassohn syndrome and further delineation of its clinical manifestations. J Am Acad Dermatol 1993;28:94250. Cross Ref link Pubmed link

      Dowling–Degos disease

      • 76  Dowling GB, Freudenthal W. Acanthosis nigricans. Br J Dermatol 1938;50:46771.
      • 77  Jafari R, Tronnier M, Vakilzadeh F. Morbus Dowling–Degos in genitoperianal localisation in a mother and daughter. Akt Derm 2003;29:2402. Cross Ref link
      • 78  Milde P, Goerz G, Plewig G. Morbus Dowling–Degos mit ausschliessich genitaler Manifestation. Hautarzt 1992;43:36972. Pubmed link
      • 79  Betz RC, Planko L, Eigelshoven S, et al. Loss‐of‐function mutations in the keratin 5 gene lead to Dowling–Degos disease. Am J Hum Genet 2006;78:51019. ** Cross Ref link Pubmed link
      • 80  Li M, Cheng R, Liang J, et al. Mutations in POFUT1, encoding protein O‐fucosyltransferase 1, cause generalized Dowling–Degos disease. Am J Hum Genet 2013;92:895903. Cross Ref link Pubmed link
      • 81  Sprecher E, Indelman M, Khamaysi Z, Lugassy J, Petronius D, Bergman R. Galli–Galli disease is an acantholytic variant of Dowling–Degos disease. Br J Dermatol 2007;156:5724. Cross Ref link Pubmed link
      • 82  Li M, Cheng R, Liang J, et al. Mutations in POFUT1, encoding protein O‐fucosyltransferase 1, cause generalized Dowling–Degos disease. Am J Hum Genet 2013;92:895903. Cross Ref link Pubmed link
      • 83  Basmanav FB, Oprisoreanu AM, Pasternack SM, et al. Mutations in POGLUT1, encoding protein O‐glucosyltransferase 1, cause autosomal‐dominant Dowling–Degos disease. Am J Hum Genet 2014;94:13543. Cross Ref link Pubmed link

      Reticulate acropigmentation of Kitamura

      • 84  Kitamura K, Akamatsu S, Hirokawa K. Eine besondere form der akropigmentation: acropigmentatio reticularis. Hautarzt 1953;4:1526. Pubmed link
      • 85  Kitamura K. Acropigmentatio reticularis, eine Allgemein in der Welt vorkommende Krankheit. Hautarzt 1976;27:3524. Pubmed link
      • 86  Griffiths WAD. Reticulate acropigmentation of Kitamura. Br J Dermatol 1976;95:43743. Cross Ref link Pubmed link
      • 87  Kono M, Sugiura K, Suganuma M, et al. Whole‐exome sequencing identifies ADAM10 mutations as a cause of reticulate acropigmentation of Kitamura, a clinical entity distinct from Dowling–Degos disease. Hum Mol Genet 2013;22:352433. ** Cross Ref link Pubmed link

      Peutz–Jeghers–Touraine syndrome

      • 88  Gruber SB, Entius MM, Petersen GM, et al. Pathogenesis of adenocarcinoma in Peutz‐Jeghers syndrome. Cancer Res 1998;58:526770. Pubmed link
      • 89  Giardiello FM, Welsh SB, Hamilton SR, et al. Increased risk of cancer in the Peutz‐Jeghers syndrome. New Engl J Med 1987;316:151114. Cross Ref link Pubmed link
      • 90  Yamada K, Matsukawa A, Hori Y, Kukita A. Ultrastructural studies on pigmented macules of the Peutz‐Jeghers syndrome. J Dermatol 1981;8:3677. Cross Ref link Pubmed link
      • 91  Jenne DE, Reimann H, Nezu J, et al. Peutz‐Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nature Genet 1998;18:3843. Cross Ref link Pubmed link
      • 92  Schumacher V, Vogel T, Leube B, et al. STK11 genotyping and cancer risk in Peutz‐Jeghers syndrome. J Med Genet 2005;42:42835. Cross Ref link Pubmed link

      Dyschromatoses

        Dyschromatosis symmetrica hereditaria

        • 93  Komaya G. Symmetrische Pigmentanomalie der Extremitaeten. Arch Dermatol Syph 1924;147:38993. Cross Ref link
        • 94  Miyamura Y, Suzuki T, Kono M, et al. Mutations of the RNA‐specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet 2003;73:6939. ** Cross Ref link Pubmed link

        Dyschromatosis universalis hereditaria

        • 95  Stuhrmann M, Hennies HC, Bukhari IA, et al. Dyschromatosis universalis hereditaria: evidence for autosomal recessive inheritance and identification of a new locus on chromosome 12q21‐q23. Clin Genet 2008;73:56672. Cross Ref link Pubmed link
        • 96  Miyamura Y, Suzuki T, Kono M, et al. Mutations of the RNA‐specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet 2003;73:6939. Cross Ref link Pubmed link
        • 97  Suzuki N, Suzuki T, Inagaki K, et al. Mutation analysis of the ADAR1 gene in dyschromatosis symmetrica hereditaria and genetic differentiation from both dyschromatosis universalis hereditaria and acropigmentatio reticularis. J Invest Dermatol 2005;124:118692. Cross Ref link Pubmed link
        • 98  Xing QH, Wang MT, Chen XD, et al. A gene locus responsible for dyschromatosis symmetrica hereditaria (DSH) maps to chromosome 6q24.2‐q25.2. Am J Hum Genet 2003;73:37782. Cross Ref link Pubmed link
        • 99  Bukhari IA, El‐Harith EA, Stuhrmann M. Dyschromatosis universalis hereditaria as an autosomal recessive disease in five members of one family. J Eur Acad Dermatol Venereol 2006;18:6289. Cross Ref link
        • 100  Zhang C, Li D, Zhang J, et al. Mutations in ABCB6 cause dyschromatosis universalis hereditaria. J Invest Dermatol 2013;133:22218. Cross Ref link Pubmed link