Werner syndrome

  • 1  Oshima J, Martin GM, Hisama FM. Werner syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al. eds. GeneReviews. Seattle, WA: University of Washington, 2002. www.ncbi.nlm.nih.gov/books/NBK1116 (last accessed November 2014).
  • 2  Yu C‐E, Oshima J, Fu Y‐H, et al. Positional cloning of the Werner's syndrome gene. Science 1996;272:25862. Cross Ref link Pubmed link
  • 3  Oshima J, Yu C‐E, Piussan C, et al. Homozygous and compound heterozygous mutations at the Werner syndrome locus. Hum Mol Genet 1996;5:190913. Cross Ref link Pubmed link
  • 4  Goto M, Imamura O, Kuromitsu J, et al. Analysis of helicase gene mutations in Japanese Werner's syndrome patients. Hum Genet 1997;99:1913. Cross Ref link Pubmed link
  • 5  Yu C‐E, Oshima J, Wijsman EM, et al. Mutations in the consensus helicase domains of the Werner syndrome gene. Am J Hum Genet 1997;60:33041. Pubmed link
  • 6  Moser MJ, Oshima J, Monnat RJ, Jr. WRN mutations in Werner syndrome. Hum Mutat 1999;13:2719. Cross Ref link Pubmed link
  • 7  Crabbe L, Jauch A, Naeger CM, et al. Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci USA 2007;104:220510. Cross Ref link Pubmed link
  • 8  Rossi ML, Ghoah AK, Bohr VA. Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 2010;9:33144. Cross Ref link Pubmed link
  • 9  Moser MJ, Bigbee WL, Grant SG, et al. Genetic instability and hematologic disease risk in Werner syndrome patients and heterozygotes. Cancer Res 2000;60:24926. Pubmed link
  • 10  Cheung HH, Liu X, Canterel‐Thouennon L, et al. Telomerase protects Werner syndrome lineage‐specific stem cells from premature aging. Stem Cell Rep 2014;2:53446. Cross Ref link
  • 11  Goto M, Tanimoto K, Horiuchi Y, Sasazuki T. Family analysis of Werner's syndrome: a survey of 42 Japanese families with a review of the literature. Clin Genet 1981;19:815. Cross Ref link Pubmed link
  • 12  Epstein CJ, Martin GM, Schultz AL, Motulsky AG. Werner's syndrome: a review of its symptomatology, natural history, pathologic features, genetics and relationship with the natural aging process. Medicine 1966;45:177222. Cross Ref link Pubmed link
  • 13  Oshima J, Hisama FM. Search and insights into novel genetic alterations leading to classical and atypical Werner syndrome. Gerontology 2014;60:23946. Cross Ref link Pubmed link
  • 14  Chen L, Lee L, Kudlow BA, et al. LMNA mutations in atypical Werner's syndrome. Lancet 2003;362:4405. Cross Ref link Pubmed link
  • 15  Davis T, Rokicki MJ, Bagley MC, Kipling D. The effect of small‐molecule inhibition of MAPKAPK2 on cell ageing phenotypes of fibroblasts from human Werner syndrome. Chem Cent J 2013;7:18. Cross Ref link Pubmed link
  • 16  Saha B, Cypro A, Martin GM, Oshima J. Rapamycin decreases DNA damage accumulation and enhances cell growth of WRN‐deficient human fibroblasts. Aging Cell 2014;13:5735. Cross Ref link Pubmed link

Bloom syndrome

  • 17  Sanz MM, German J. Bloom's syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. Seattle, WA: University of Washington, 2006. www.ncbi.nlm.nih.gov/books/NBK1116 (last accessed November 2014).
  • 18  Bloom D. The syndrome of congenital telangiectatic erythema and stunted growth. J Pediatr 1966;68:10313. Cross Ref link Pubmed link
  • 19  Arora H, Chacon AH, Choudhary S, et al. Bloom syndrome. Int J Dermatol 2014;53:798802. Cross Ref link Pubmed link
  • 20  Ellis NA, Groden J, Ye TZ, et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 1995;83:65566. Cross Ref link Pubmed link
  • 21  Foucault F, Vaury C, Barakat A, et al. Characterization of a new BLM mutation associated with a topoisomerase IIa defect in a patient with Bloom's syndrome. Hum Mol Genet 1997;6:142734. Cross Ref link Pubmed link
  • 22  Dicken CH, Dewald G, Gordon H. Sister chromatid exchanges in Bloom's syndrome. Arch Dermatol 1978;114:75560. Cross Ref link Pubmed link
  • 23  Ellis NA, Ciocci S, Proytcheva M, et al. The Ashkenazic Jewish Bloom syndrome mutation blmAsh is present in non‐Jewish Americans of Spanish ancestry. Am J Hum Genet 1998;63:168593. Cross Ref link Pubmed link
  • 24  German J, Sanz MM, Ciocci S, et al. Syndrome‐causing mutations of the BLM gene in persons in the Bloom's Syndrome Registry. Hum Mutat 2007;28:74353. Cross Ref link Pubmed link
  • 25  German J. Bloom's syndrome. Dermatol Clin 1995;13:718. Pubmed link
  • 26  German J. Bloom's syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet 1997;93:1006. Cross Ref link Pubmed link
  • 27  Kauli R, Prager‐Lewin R, Kaufman H, et al. Gonadal function in Bloom's syndrome. Clin Endocrinol 1977;6:2859. Cross Ref link
  • 28  Chisolm CA, Bray MJ, Karns LB. Successful pregnancy in a woman with Bloom syndrome. Am J Med Genet 2001;102:1368. Cross Ref link Pubmed link
  • 29  Mori S, Kondon N, Motoyoshi F, et al. Diabetes mellitus in a young man with Bloom's syndrome. Clin Genet 1990;38:38790. Cross Ref link Pubmed link
  • 30  Thompson ER, Doyle MA, Ryland GL, et al. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLOS Genet 2012;8:e1002894. Cross Ref link Pubmed link
  • 31  Prokofyeva D, Baddanova N, Dubrowinskaja N, et al. Nonsense mutation p.Q548X in BLM, the gene mutated in Bloom's syndrome, is associated with breast cancer in Slavic populations. Breast Cancer Res Treat 2013;137:5339. Cross Ref link Pubmed link
  • 32  Thomas ER, Shanley S, Walker L, Eeles R. Surveillance and treatment of malignancy in Bloom syndrome. Clin Oncol (R Coll Radiol) 2008;20:3759. Cross Ref link Pubmed link
  • 33  Howell RT, Davies T. Diagnosis of Bloom's syndrome by sister chromatid exchange in chorionic villus cultures. Prenat Diagn 1994;14:10713. Cross Ref link Pubmed link

Progeroid laminopathies and related conditions

  • 34  Davies BS, Fong LG, Yang SH, et al. The posttranslational processing of prelamin A and disease. Annu Rev Genomics Hum Genet 2009;10:15374. Cross Ref link Pubmed link
  • 35  Bertrand AT, Chikhaoui K, Ben Yaou R, le Bonne G. Clinical and genetic heterogeneity in laminopathies. Biochem Soc Trans 2011;39:168792. Cross Ref link Pubmed link

Hutchinson–Gilford progeria syndrome

  • 36  Gordon LB, Brown WT, Collins FS. Hutchinson–Gilford progeria syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. Seattle, WA: University of Washington, 2003. www.ncbi.nlm.nih.gov/books/NBK1116 (last accessed November 2014).
  • 37  Hennekam RCM. Hutchinson–Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 2006;140A:260324. Cross Ref link
  • 38  De Sandre‐Giovannoli A, Bernard R, Cau P, et al. Lamin A truncation in Hutchinson–Gilford progeria. Science 2003;300:2055. Cross Ref link Pubmed link
  • 39  Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 2003;423:2938. Cross Ref link Pubmed link
  • 40  Wuyts W, Biervliet M, Reyniers E, et al. Somatic and gonadal mosaicism in Hutchinson–Gilford progeria. Am J Med Genet 2005;135:668. Cross Ref link Pubmed link
  • 41  Cao H, Hegele RA. LMNA is mutated in Hutchinson–Gilford progeria (MIM 176670) but not in Wiedemann–Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet 2003;48:2714. Cross Ref link Pubmed link
  • 42  Moulson CL, Fong LG, Gardner JM, et al. Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes. Hum Mutat 2007;28:8829. Cross Ref link Pubmed link
  • 43  Chen L, Lee L, Kudlow BA, et al. LMNA mutations in atypical Werner's syndrome. Lancet 2003;362:4405. Cross Ref link Pubmed link
  • 44  Bertrand AT, Chikhaoui K, Ben Yaou R, le Bonne G. Clinical and genetic heterogeneity in laminopathies. Biochem Soc Trans 2011;39:168792. Cross Ref link Pubmed link
  • 45  Goldman RD, Shumaker DK, Erdos MR, et al. Accumulation of mutant lamin A causes progressive changes in nuclea architecture in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 2004;101:89638. Cross Ref link Pubmed link
  • 46  Erdem N, Günes AT, Avci O, Osma E. A case of Hutchinson–Gilford progeria syndrome mimicking scleredema in early infancy. Dermatology 1994;188:31821. Cross Ref link Pubmed link
  • 47  Mazereeuw‐Hautier J, Wilson LC, Mohammed S, et al. Hutchinson–Gilford progeria syndrome: clinical findings in three patients carrying the G608G mutation in LMNA and review of the literature. Br J Dermatol 2007;156:130814. Cross Ref link Pubmed link
  • 48  Ackerman J, Gilbert‐Barness E. Hutchinson–Gilford progeria syndrome: a pathologic study. Pediatr Pathol Mol Med 2002;21:113. Cross Ref link Pubmed link
  • 49  Merideth MA, Gordon LB, Clauss S, et al. Phenotype and course of Hutchinson–Gilford progeria syndrome. N Engl J Med 2008;358:592604. Cross Ref link Pubmed link
  • 50  Glynn MW, Glover TW. Incomplete processing of mutant lamin A in Hutchinson–Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet 2005;14:295969. Cross Ref link Pubmed link
  • 51  Wang Y, Ostlund C, Worman HJ. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson–Gilford progeria syndrome. Nucleus 2010;1:4329. Cross Ref link Pubmed link
  • 52  Varela I, Pereira S, Ugalde AP, et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 2008;14:76772. Cross Ref link Pubmed link
  • 53  Cao K, Graziotto JJ, Blair CD, et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells. Sci Transl Med 2011;3:89ra58. Pubmed link
  • 54  Gordon LB, Massaro J, D'Agostino RB, et al. Impact of farnesylation inhibitors on survival in Hutchinson–Gilford progeria syndrome. Circulation 2014;130:2734. Cross Ref link Pubmed link

Mandibuloacral dysplasia with type A and type B lipodystrophy

  • 55  Novelli G, Muchir A, Sangiuolo F, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA‐encoding lamin A/C. Am J Hum Genet 2002;71:42631. Cross Ref link Pubmed link
  • 56  Ahmad Z, Zackai E, Medne L, Garg A. Early onset mandibuloacral dysplasia due to compound heterozygous mutations in ZMPSTE24. Am J Med Genet 2010;152A:270310. Cross Ref link Pubmed link
  • 57  Shen JJ, Brown CA, Lupski JR, Potocki L. Mandibuloacral dysplasia caused by homozygosity for the R527H mutation in lamin A/C. J Med Genet 2003;40:8547. Cross Ref link Pubmed link
  • 58  Garavelli L, D'Apice MR, Rivieri F, et al. Mandibuloacral dysplasia type A in childhood. Am J Med Genet 2009;149A:225864. Cross Ref link Pubmed link
  • 59  Agarwal AK, Fryns JP, Auchus RJ, Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet 2003;12:19952001. Cross Ref link Pubmed link
  • 60  Miyoshi Y, Akagi M, Agarwal AK, et al. Severe mandibuloacral dysplasia caused by novel compound heterozygous ZMPSTE24 mutations in two Japanese siblings. Clin Genet 2008;73:53544. Cross Ref link Pubmed link
  • 61  Lombardi F, Gullotta F, Columbaro M, et al. Compound heterozygosity for mutations in LMNA in a patient with a myopathic and lipodystrophic mandibuloacral dysplasia type A phenotype. J Clin Endocrinol Metab 2007;92:446771. Cross Ref link Pubmed link

Cutis laxa: autosomal dominant and autosomal recessive

  • 62  Van Maldergem L, Loeys B. FBLN5‐related cutis laxa. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. Seattle, WA: University of Washington, 2009. www.ncbi.nlm.nih.gov/books/NBK1116 (last accessed November 2014).
  • 63  Loeys B, De Paepe A, Urban Z. EFEMP2‐related cutis laxa. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. Seattle, WA: University of Washington, 2011. www.ncbi.nlm.nih.gov/books/NBK1116 (last accessed November 2014).
  • 64  Van Maldergem L, Dobyns W, Kornak U. ATP6V0A2‐related cutis laxa. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. Seattle, WA: University of Washington, 2009. www.ncbi.nlm.nih.gov/books/NBK1116 (last accessed November 2014).
  • 65  Yanagisawa H, Davis EC, Starcher BC, et al. Fibulin‐5 is an elastin‐binding protein essential for elastic fibre development in vivo. Nature 2002;415:16871. Cross Ref link Pubmed link
  • 66  Graul‐Neumann LM, Hausser I, Essayie M, et al. Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene. Am J Med Genet 2008;146A:97783. Cross Ref link Pubmed link
  • 67  Zhang MC, He L, Giro M, et al. Cutis laxa arising from frameshift mutations in exon 30 of the elastin gene (ELN). J Biol Chem 1999;274:9816. Cross Ref link Pubmed link
  • 68  Szabo Z, Crepeau MW, Mitchell AL, et al. Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. J Med Genet 2006;43:2558. Cross Ref link Pubmed link
  • 69  Markova D, Zou Y, Ringpfeil F, et al. Genetic heterogeneity of cutis laxa: a heterozygous tandem duplication within the fibulin‐5 (FBLN5) gene. Am J Hun Genet 2003;72:9981004. Cross Ref link
  • 70  Van Maldergem L, Vamos E, Liebaers I, et al. Severe congenital cutis laxa with pulmonary emphysema: a family with three affected sibs. Am J Med Genet 1988;31:45564. Cross Ref link Pubmed link
  • 71  Loeys B, Van Maldergem L, Mortier G, et al. Homozygosity for a missense mutation in fibulin‐5 (FBLN5) results in a severe form of cutis laxa. Hum Mol Genet 2002;11:211318. Cross Ref link Pubmed link
  • 72  Callewaert B, Su CT, Van Damme T, et al. Comprehensive clinical and molecular analysis of 12 families with type 1 recessive cutis laxa. Hum Mutat 2013;34:11121. Cross Ref link Pubmed link
  • 73  Hoyer J, Kraus C, Hammerson G, et al. Lethal cutis laxa with contractural arachnodactyly, overgrowth and soft tissue bleeding due to a novel homozygous fibulin‐4 gene mutation. Clin Genet 2009;76:27681. Cross Ref link Pubmed link
  • 74  Renard M, Holm T, Veith R, et al. Altered TGFbeta signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin‐4 deficiency. Eur J Hum Genet 2010;18:895901. Cross Ref link Pubmed link
  • 75  Urban Z, Hucthagowder V, Schürmann N, et al. Mutations in LTBP4 cause a syndrome of impaired pulmonary, gastrointestinal, genitourinary, musculoskeletal, and dermal development. Am J Hum Genet 2009; 85:593605. Cross Ref link Pubmed link
  • 76  Ledoux‐Corbusier M. Cutis laxa, congenital form with pulmonary emphysema: an ultrastructural study. J Cutan Pathol 1983;10:3409. Cross Ref link Pubmed link
  • 77  Fischer B, Dimopoulou A, Egerer J, et al. Further characterization of ATP6V0A2‐related autosomal recessive cutis laxa. Hum Genet 2012;131:176173. Cross Ref link Pubmed link
  • 78  Guernsey DL, Jiang H, Evans SC, et al. Mutation in pyrroline‐5‐carboxylate reductase 1 gene in families with cutis laxa type 2. Am J Hum Genet 2009;85:1209. Cross Ref link Pubmed link
  • 79  Reversade B, Escande‐Beillard N, Dimopoulou A, et al. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 2009;41:101621. Cross Ref link Pubmed link
  • 80  Dimopoulou A, Fisher B, Gardeitchik T, et al. Genotype–phenotype spectrum of PYCR1‐related autosomal recessive cutis laxa. Mol Genet Metab 2013;110:35261. Cross Ref link Pubmed link
  • 81  De Barsy AM, Moens E, Dierckx L. Dwarfism, oligophrenia and degeneration of the eastic tissue in skin and cornea. A new syndrome? Helv Paediatr Acta 1968;23:30513. Pubmed link
  • 82  Baumgartner MR, Hu CA, Almashanu S, et al. Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta(1)‐pyrroline‐5‐carboxylate synthase. Hum Mol Genet 2000;9:28538. Cross Ref link Pubmed link
  • 83  Bicknell LS, Pitt J, Aftimos S, et al. A missense mutation in ALDH38A1, encoding Delta 1‐pyrroline‐5‐carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur J Hum Genet 2008;16:117686. Cross Ref link Pubmed link
  • 84  Lin DS, Chang JH, Liu HL, et al. Compound heterozygous mutations in PYCR1 further expand the phenotypic spectrum of De Barsy syndrome. Am J Med Genet 2011;155A:30959. Cross Ref link Pubmed link
  • 85  Basel‐Vanagaite L, Sarig O, Hershkovitz D, et al. RIN2 deficiency results in macrocephaly, alopecia, cutis laxa, and scoliosis: MACS syndrome. Am J Hum Genet 2009;85:25463. Cross Ref link Pubmed link
  • 86  Hunter AG. Is geroderma osteodysplastica underdiagnosed? J Med Genet 1988;25:8547. Cross Ref link Pubmed link
  • 87  Hennies HC, Kornak U, Zhang H, et al. Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab‐6 interacting golgin. Nat Genet 2008;40:141012. Cross Ref link Pubmed link
  • 88  Tsukahara M, Imaizumi K, Kawai S, Kajili T. Occipital horn syndrome: report of a patient and review of the literature. Clin Genet 1994;45:325. Cross Ref link Pubmed link
  • 89  Khakoo A, Thomas R, Trompeter R, et al. Congenital cutis laxa and lysyl oxidase deficiency. Clin Genet 1997;51:10914. Cross Ref link Pubmed link
  • 90  Kaler SG, Gallo LK, Proud VK, et al. Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nat Genet 1994;8:195202. Cross Ref link Pubmed link
  • 91  Moltzer E, te Riet L, Swagemakers SM, et al. Impaired vascular contractility and aortic wall degeneration in fibulin‐4 deficient mice: effect of angiotensin II type 1 (AT) receptor blockade. PLOS One 2011;6:e23411. Cross Ref link Pubmed link
  • 92  Kodama H, Fujisawa C, Bhadhprasit W. Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment. Curr Drug Metab 2012;13:23750. Cross Ref link Pubmed link
  • 93  Tamura BM, Lourenço LM, Platt A, et al. Cutis laxa: improvement of facial aesthetics by using botulinum toxin. Dermatol Surg 2004;30:151820. Pubmed link
  • 94  Xue Y, Chen H, Zeng X, et al. Generalized acquired cutis laxa treated with facial plastic surgery. Eur J Dermatol 2011;21:1412. Pubmed link