Xeroderma pigmentosum

  • 1  Fassihi H. Spotlight on ‘xeroderma pigmentosum’. Photochem Photobiol Sci 2013;12:7884. Cross Ref link Pubmed link
  • 2  Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 1987;123:24150. Cross Ref link Pubmed link
  • 3  Hebra F, Kaposi M. On Diseases of the Skin Including the Exanthemata, Vol. 3 (translated by W. Tay). London: New Sydenham Society, 1874;61:2528.
  • 4  Kaposi M. [Xeroderma pigmentosum.] Med Jahrb Wien 1882;61933. (French translation, Ann Dermatol Syphiligr 1883;4:29–38.)
  • 5  Neisser A. Ueber das ‘Xeroderma pigmentosum’ (Kaposi): Lioderma essentialis cum melanosi et telangiectasia. Vierteljahrschr Dermatol Syphil 1883;4762. Cross Ref link
  • 6  De Sanctis C, Cacchione A. L'idiozia xerodermica. Riv Sper Freniatr 1932;56:26992.
  • 7  Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature 1968;218:6526. Cross Ref link Pubmed link
  • 8  Setlow RB, Setlow JK. Evidence that ultraviolet‐induced thymine dimers in DNA cause biological damage. Proc Natl Acad Sci USA 1962;48:12507. Cross Ref link Pubmed link
  • 9  Epstein JH, Fukuyama K, Reed WB, Epstein WL. Defect in DNA synthesis in skin of patients with xeroderma pigmentosum demonstrated in vivo. Science 1970;168:14778. Cross Ref link Pubmed link
  • 10  Burk PG, Lutzner MA, Clarke DD, Robbins JH. Ultraviolet‐stimulated thymidine incorporation in xeroderma pigmentosum lymphocytes. J Lab Clin Med 1971;77:75967. Pubmed link
  • 11  Cleaver JE. Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to ultraviolet light. J Invest Dermatol 1972;58:1248. Cross Ref link Pubmed link
  • 12  Lehmann AR, Kirk‐Bell S, Arlett CF, et al. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV‐irradiation. Proc Nat Acad Sci 1975;72:21923. Cross Ref link Pubmed link
  • 13  De Weerd‐Kastelein EA, Keijzer W, Bootsma D. Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nat New Biol 1972;238:803. Cross Ref link Pubmed link
  • 14  Robbins JH, Kraemer KH, Lutzner MA, et al. Xeroderma pigmentosum: an inherited disease with sun‐ sensitivity, multiple cutaneous neoplasms, and abnormal DNA repair. Annals Internal Med 1974;80:221248. Cross Ref link
  • 15  Takebe H, Miki Y, Kozuka T, et al. DNA repair characteristics and skin cancers of xeroderma pigmentosum patients in Japan. Cancer Res 1977;37:4905. Pubmed link
  • 16  Kleijer WJ, Laugel V, Berneburg M, et al. Incidence of DNA repair deficiency disorders in western Europe: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. DNA Repair (Amst) 2008;7:74450. Cross Ref link Pubmed link
  • 17  Hirai Y, Kodama Y, Moriwaki S, et al. Heterozygous individuals bearing a founder mutation in the XPA DNA repair gene comprise nearly 1% of the Japanese population. Mutat Res 2006;601:1718. Cross Ref link Pubmed link
  • 18  Khatri ML, Bemghazil M, Shafi M, Machina A. Xeroderma pigmentosum in Libya. Int J Dermatol 1999;38:5204. Cross Ref link Pubmed link
  • 19  Fazaa B, Zghal M, Bailly C, et al. Melanoma in xeroderma pigmentosum: 12 cases. Ann Dermatol Vénéréol 2001;128:5036.
  • 20  Zghal M, El‐Fekih N, Fazaa B, et al. Xeroderma pigmentosum: manifestations cutanees, oculaires et neurologiques a partir de 49 patients tunisiens. Tunis Med 2005;83:7603. Pubmed link
  • 21  Moussaid L, Benchikhi H, Boukind EH, et al. Tumeurs cutanees au cours du xeroderma pigmentosum au Maroc. Ann Dermatol Vénéréol 2004;131:2933.
  • 22  Soufir N, Ged C, Bourillon A, et al. A prevalent mutation with founder effect in xeroderma pigmentosum group C from North Africa. J Invest Dermatol 2010;130:153742. Cross Ref link Pubmed link
  • 23  Cartault F, Nava C, Malbrunot AC, et al. A new XPC gene splicing mutation has lead to the highest worldwide prevalence of xeroderma pigmentosum in black Mahori patients. DNA Repair (Amst) 2011;10:57785. Cross Ref link Pubmed link
  • 24  Cleaver JE, Trosko JE. Absence of excision of ultraviolet‐induced cyclobutane dimers in xeroderma pigmentosum. Photochem Photobiol 1970;11:54750. Cross Ref link Pubmed link
  • 25  Cleaver JE, Lam ET, Revet I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 2009;10:75668. Cross Ref link Pubmed link
  • 26  Sethi M, Lehmann AR, Fassihi H. Xeroderma pigmentosum – a multidisciplinary approach. Eur Med J Dermatol 2013;1:5463.
  • 27  Lehmann AR, McGibbon D, Stefanini M. Xeroderma pigmentosum. Orphanet J Rare Dis 2011;6:70. Cross Ref link Pubmed link
  • 28  Friedberg EC. DNA damage and repair. Nature 2003;421:43640. Cross Ref link Pubmed link
  • 29  Masutani C, Kusumoto R, Yamada A, et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 1999;399:7004. Cross Ref link Pubmed link
  • 30  Sethi M, Lehmann AR, Fawcett H, et al. Patients with xeroderma pigmentosum complementation groups C, E and V do not have abnormal sunburn reactions. Br J Dermatol 2013;169:127987. Cross Ref link Pubmed link
  • 31  Venema J, van Hoffen A, Karcagi V, et al. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol Cell Biol 1991;11:412834. Cross Ref link Pubmed link
  • 32  Totonchy MB, Tamura D, Pantell MS, et al. Auditory analysis of xeroderma pigmentosum 1971–2012: hearing function, sun sensitivity and DNA repair predict neurological degeneration. Brain 2013;136:194208. Cross Ref link Pubmed link
  • 33  Berg RJ, Ruven HJ, Sands AT, et al. Defective global genome repair in XPC mice is associated with skin cancer susceptibility but not with sensitivity to UVB induced erythema and edema. J Invest Dermatol 1998;110:4059. Cross Ref link Pubmed link
  • 34  Garssen J, van Steeg H, de Gruijl F, et al. Transcription‐coupled and global genome repair differentially influence UV‐B‐induced acute skin effects and systemic immunosuppression. J Immunol 2000;164:6199205. Cross Ref link Pubmed link
  • 35  Ziegler A, Jonason A, Simon J, et al. Tumor suppressor gene mutations and photocarcinogenesis. Photochem Photobiol 1996;63:4325. Cross Ref link Pubmed link
  • 36  Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010;463:1917. Cross Ref link Pubmed link
  • 37  Kraemer KH, Lee MM, Andrews AD, Lambert WC. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch Dermatol 1994;130:101821. Cross Ref link Pubmed link
  • 38  Daya‐Grosjean L, Sarasin A. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors. Mutat Res 2005;571:4356. Cross Ref link Pubmed link
  • 39  Bradford PT, Goldstein AM, Tamura D, et al. Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow‐up characterises the role of DNA repair. J Med Genet 2010;48:16876. Cross Ref link Pubmed link
  • 40  Maher VM, Patton JD, Yang JL, et al. Mutations and homologous recombination induced in mammalian cells by metabolites of benzo[a]‐pyrene and 1‐nitropyrene. Environ Health Perspect 1987;76:339. Cross Ref link Pubmed link
  • 41  DiGiovanna JJ, Patronas N, Katz D, et al. Xeroderma pigmentosum: spinal cord astrocytoma with 9‐year survival after radiation and isotretinoin therapy. J Cutan Med Surg 1998;2:1538. Pubmed link
  • 42  Giannelli F, Avery J, Polani PE, et al. Xeroderma pigmentosum and medulloblastoma: chromosomal damage to lymphocytes during radiotherapy. Radiat Res 1981;88:194208. Cross Ref link Pubmed link
  • 43  Brooks BP, Thompson AH, Bishop RJ, et al. Ocular manifestations of xeroderma pigmentosum: long‐term follow‐up highlights the role of DNA repair in protection from sun damage. Ophthalmology 2013;120:132436. Cross Ref link Pubmed link
  • 44  Gaasterland DE, Rodrigues MM, Moshell AN. Ocular involvement in xeroderma pigmentosum. Ophthalmology 1982;89:9806. Cross Ref link Pubmed link
  • 45  Brooks PJ. The 8,5'‐cyclopurine‐2'‐deoxynucleosides: candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair (Amst) 2008;7:116879. Cross Ref link Pubmed link
  • 46  Anttinen A, Koulu L, Nikoskelainen E, et al. Neurological symptoms and natural course of xeroderma pigmentosum. Brain 2008;131:197989. Cross Ref link Pubmed link
  • 47  Stefanini M, Keijzer W, Dalpra L, et al. Differences in the levels of UV repair and in clinical symptoms in two sibs affected by xeroderma pigmentosum. Hum Genet 1980;54:17782. Cross Ref link Pubmed link
  • 48  Lehmann AR, Stevens S. A rapid procedure for measurement of DNA repair in human fibroblasts and for complementation analysis of xeroderma pigmentosum cells. Mutat Res 1980;69:17790. Cross Ref link Pubmed link
  • 49  Limsirichaikul S, Niimi A, Fawcett H, et al. A rapid non‐radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU). Nucleic Acids Res 2009;37:e31. Cross Ref link Pubmed link
  • 50  Arlett CF, Harcourt SA, Broughton BC. The influence of caffeine on cell survival in excision‐proficient and excision‐deficient xeroderma pigmentosum and normal human cell strains following ultraviolet light irradiation. Mutat Res 1975;33:3416. Cross Ref link Pubmed link
  • 51  Broughton BC, Cordonnier A, Kleijer WJ, et al. Molecular analysis of mutations in DNA polymerase eta in xeroderma pigmentosum‐variant patients. Proc Natl Acad Sci USA 2002;99:81520. Cross Ref link Pubmed link
  • 52  Chavanne F, Broughton BC, Pietra D, et al. Mutations in the XPC gene in families with xeroderma pigmentosum and consequences at the cell, protein and transcript levels. Cancer Res 2000;60:197482. Pubmed link
  • 53  Kraemer KH, DiGiovanna JJ, Moshell AN, et al. Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N Engl J Med 1988;318:16337. Cross Ref link Pubmed link
  • 54  Bettoli V, Zauli S, Virgili A. Retinoids in the chemoprevention of non‐melanoma skin cancers: why, when and how. J Dermatolog Treat 2013;24:2357. Cross Ref link Pubmed link
  • 55  Procianoy F, Cruz AA, Baccega A, et al. Aggravation of eyelid and conjunctival malignancies following photodynamic therapy in DeSanctis–Cacchione syndrome. Ophthal Plast Reconstr Surg 2006;22:4989. Cross Ref link Pubmed link
  • 56  Marchetto MC, Muotri AR, Burns DK, et al. Gene transduction in skin cells in preventing cancer in xeroderma pigmentosum mice. Proc Natl Acad Sci USA 2004;101:1775964. Cross Ref link Pubmed link
  • 57  Marchetto MC, Correa RG, Menck CF, Muotri AR. Functional lentiviral vectors for xeroderma pigmentosum gene therapy. J Biotechnol 2006;126:42430. Cross Ref link Pubmed link

Cockayne syndrome

  • 58  Cockayne EA. Dwarfism with retinal atrophy and deafness. Arch Dis Child 1936;11:18. Cross Ref link Pubmed link
  • 59  Nance MA, Berry SA. Cockayne syndrome: review of 140 cases. Am J Med Genet 1992;42:6884. Cross Ref link Pubmed link
  • 60  Cleaver JE, Lam ET, Revet I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 2009;10:75668. Cross Ref link Pubmed link
  • 61  Mayne LV, Lehmann AR, Waters R. Excision repair in Cockayne syndrome. Mutat Res 1982;106:17989. Cross Ref link Pubmed link
  • 62  Rainbow AJ, Howes M. A deficiency in the repair of UV and gamma‐ray damaged DNA in fibroblasts from Cockayne's syndrome. Mutat Res 1982;93:23547. Cross Ref link Pubmed link
  • 63  Yatani R, Kusano I, Shiraishi T, et al. DNA synthesis and hypersensitivity to ultraviolet radiation in Cockayne's syndrome. Exp Mol Pathol 1982;36:36172. Cross Ref link Pubmed link
  • 64  Venema J, Mullenders LH, Natarajan AT, et al. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV‐induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci USA 1990;87:470711. Cross Ref link Pubmed link
  • 65  Mayne LV, Lehmann AR. Failure of RNA synthesis to recover after UV‐irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res 1982;42:14738. Pubmed link
  • 66  Troelstra C, van Gool A, de Wit J, et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 1992;71:93953. Cross Ref link Pubmed link
  • 67  Henning KA, Li L, Iyer N, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 1995;82:55564. Cross Ref link Pubmed link
  • 68  Stefanini M, Fawcett H, Botta E, et al. Genetic analysis of twenty‐two patients with Cockayne syndrome. Hum Genet 1996;97:41823. Cross Ref link Pubmed link
  • 69  Licht CL, Stevnsner T, Bohr VA. Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet 2003;73:1217239. Cross Ref link Pubmed link
  • 70  Macdonald WB, Fitch KD, Lewis IC. Cockayne's syndrome. A heredo‐familial disorder of growth and development. Pediatrics 1960;25:9971007. Pubmed link
  • 71  Frouin E, Laugel V, Durand M, et al. Dermatologic findings in 16 patients with Cockayne syndrome and cerebro‐oculo‐facial‐skeletal syndrome. JAMA Dermatol 2013;149:141418. Cross Ref link Pubmed link
  • 72  Lieberman WJ, Schimek RA, Snyder CH. Cockayne's disease. A report of a case. Am J Ophthalmol 1961;52:11618. Cross Ref link Pubmed link
  • 73  Riggs W, Seibert J. Cockayne's syndrome: roentgen findings. Am J Roentgenol 1972;116:62333. Cross Ref link
  • 74  Lehmann AR, Thompson AF, Harcourt SA, et al. Cockayne's syndrome: correlation of clinical features with cellular sensitivity of RNA synthesis to UV‐irradiation. J Med Genet 1993;30:67982. Cross Ref link Pubmed link
  • 75  Bertola DR, Cao H, Albano LM, et al. Cockayne syndrome type A: novel mutations in eight typical patients. J Hum Genet 2006;51:7015. Cross Ref link Pubmed link
  • 76  Kraemer KH, Patronas NJ, Schiffmann R. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype‐phenotype relationship. Neuroscience 2007;145:138896. Cross Ref link Pubmed link
  • 77  Pena SDJ, Shokeir MHK. Syndrome of camptodactyly, multiple ankyloses, facial anomalies, and pulmonary hypoplasia: a lethal condition. J Pediat 1974;85:3735. Cross Ref link Pubmed link
  • 78  Preus M, Fraser FC. The cerebro‐oculo‐facio‐skeletal syndrome. Clin Genet 1974;5:2947. Cross Ref link Pubmed link
  • 79  Laugel V, Dalloz C, Tobias ES, et al. Cerebro‐oculo‐facio‐skeletal syndrome: three additional cases with CSB mutations, new diagnostic criteria and an approach to investigation. J Med Genet 2008;45:56471. Cross Ref link Pubmed link
  • 80  Jaakkola E, Mustonen A, Olsen P, et al. ERCC6 founder mutation identified in Finnish patients with COFS syndrome. Clin Genet 2010;78:5417. Cross Ref link Pubmed link
  • 81  Graham JM, Jr, Anyane‐Yeboa K, Raams A, et al. Cerebro‐oculo‐facio‐skeletal syndrome with a nucleotide excision‐repair defect and a mutated XPD gene, with prenatal diagnosis in a triplet pregnancy. Am J Hum Genet 2001;69:291300. Cross Ref link Pubmed link
  • 82  Hamel BCJ, Raams A, Schuitema‐Dijkstra AR, et al. Xeroderma pigmentosum–Cockayne syndrome complex: a further case. J Med Genet 1996;33:60710. Cross Ref link Pubmed link
  • 83  Jaspers NGJ, Raams A, Silengo MC, et al. First reported patient with human ERCC1 deficiency has cerebro‐oculo‐facio‐skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet 2007;80:45766. Cross Ref link Pubmed link
  • 84  Spivak G. UV‐sensitive syndrome. Mutat Res 2005;577:1629. Cross Ref link Pubmed link
  • 85  Itoh T, Ono T, Yamaizumi M. A new UV‐sensitive syndrome not belonging to any complementation groups of xeroderma pigmentosum or Cockayne syndrome: siblings showing biochemical characteristics of Cockayne syndrome without typical clinical manifestations. Mutat Res 1994;314:23348. Cross Ref link Pubmed link
  • 86  Nardo T, Oneda R, Spivak G, et al. A UV‐sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci USA 2009;106:620914. Cross Ref link Pubmed link
  • 87  Horibata K, Iwamoto Y, Kuraoka I, et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV‐sensitive syndrome but not Cockayne syndrome. Proc Natl Acad Sci USA 2004;101:1541015. Cross Ref link Pubmed link
  • 88  Nakazawa Y, Sasaki K, Mitsutake N, et al. Mutations in UVSSA cause UV‐sensitive syndrome and impair RNA polymerase IIo processing in transcription‐coupled nucleotide‐excision repair. Nat Genet 2012;44:58692. Cross Ref link Pubmed link
  • 89  Miyauchi H, Horio T, Akaeda T, et al. Cockayne syndrome in two adult siblings. J Am Acad Dermatol 1994;30:32935. Cross Ref link Pubmed link
  • 90  Lehmann AR, Francis AJ, Giannelli F. Prenatal diagnosis of Cockayne's syndrome. Lancet 1985;i:4868. Cross Ref link
  • 91  Cleaver JE, Volpe JP, Charles WC, et al. Prenatal diagnosis of xeroderma pigmentosum and Cockayne syndrome. Prenat Diagn 1994;14:9218. Cross Ref link Pubmed link

Trichothiodystrophy

  • 92  Baden HP, Jackson CE, Weiss L, et al. The physicochemical properties of hair in the BIDS syndrome. Am J Hum Genet 1976;28:51421. Pubmed link
  • 93  Price VH, Odom RB, Ward WH, et al. Trichothiodystrophy: sulfur‐deficient brittle hair as a marker for a neuroectodermal symptom complex. Arch Dermatol 1980;116:137584. Cross Ref link Pubmed link
  • 94  Liang C, Kraemer KH, Morris A, et al. Characterization of tiger‐tail banding and hair shaft abnormalities in trichothiodystrophy. J Am Acad Dermatol 2005;52:22432. Cross Ref link Pubmed link
  • 95  Liang C, Morris A, Schlucker S, et al. Structural and molecular hair abnormalities in trichothiodystrophy. J Invest Dermatol 2006;126:221016. Cross Ref link Pubmed link
  • 96  Faghri S, Tamura D, Kraemer KH, et al. Trichothiodystrophy: a systematic review of 112 published cases characterises a wide spectrum of clinical manifestations. J Med Genet 2008;45:60921. Cross Ref link Pubmed link
  • 97  Price VH, Odom RB, Ward WH, Jones FT. Trichothiodystrophy: sulfur‐deficient brittle hair as a marker for a neuroectodermal symptom complex. Arch Dermatol 1980;116:137584. Cross Ref link Pubmed link
  • 98  Crovato F, Borrone C, Rebora A. Trichothiodystrophy – BIDS, IBIDS and PIBIDS? Br J Dermatol 1983;108:247. Cross Ref link Pubmed link
  • 99  Jorizzo JL, Crounse RG, Wheeler CE, Jr. Lamellar ichthyosis, dwarfism, mental retardation, and hair shaft abnormalities. A link between the ichthyosis‐associated and BIDS syndromes. J Am Acad Dermatol 1980;2:30917. Cross Ref link Pubmed link
  • 100  Jorizzo JL, Atherton DJ, Crounse RG, Wells RS. Ichthyosis, brittle hair, impaired intelligence, decreased fertility and short stature (IBIDS syndrome). Br J Dermatol 1982;106:70510. Cross Ref link Pubmed link
  • 101  Baden HP, Jackson CE, Weiss L, et al. The physicochemical properties of hair in the BIDS syndrome. Am J Hum Genet 1976;28:51421. Pubmed link
  • 102  Stefanini M, Lagomarsini P, Arlett CF, et al. Xeroderma pigmentosum (complementation group D) mutation is present in patients affected by trichothiodystrophy with photosensitivity. Hum Genet 1986;74:107112. Cross Ref link Pubmed link
  • 103  Weeda G, Eveno E, Donker I, et al. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am J Hum Genet 1997;60:3209. Pubmed link
  • 104  Stefanini M, Vermeulen W, Weeda G, et al. A new nucleotide‐excision‐repair gene associated with the disorder trichothiodystrophy. Am J Hum Genet 1993;53:81721. Pubmed link
  • 105  Giglia‐Mari G, Coin F, Ranish JA, et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 2004;36:71419. Cross Ref link Pubmed link
  • 106  Hashimoto S, Egly JM. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum Mol Genet 2009;18:R22430. Cross Ref link Pubmed link
  • 107  Nakabayashi K, Amann D, Ren Y, et al. Identification of C7orf11 (TTDN1) gene mutations and genetic heterogeneity in nonphotosensitive trichothiodystrophy. Am J Hum Genet 2005;76:51016. Cross Ref link Pubmed link
  • 108  Stefanini M, Botta E, Lanzafame M, et al. Trichothiodystrophy: from basic mechanisms to clinical implications. DNA Repair (Amst) 2010;9:210. Cross Ref link Pubmed link
  • 109  Boyle J, Ueda T, Oh KS, et al. Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: cancer‐prone xeroderma pigmentosum vs. non‐cancer‐prone trichothiodystrophy. Hum Mutat 2008;29:1194208. Cross Ref link Pubmed link
  • 110  Tamura D, Merideth M, DiGiovanna JJ, et al. High‐risk pregnancy and neonatal complications in the DNA repair and transcription disorder trichothiodystrophy: report of 27 affected pregnancies. Prenat Diagn 2011;31:104653. Cross Ref link Pubmed link
  • 111  Moslehi R, Signore C, Tamura D, et al. Adverse effects of trichothiodystrophy DNA repair and transcription gene disorder on human fetal development. Clin Genet 2010;77:36573. Cross Ref link Pubmed link
  • 112  Brooks BP, Thompson AH, Clayton JA, et al. Ocular manifestations of trichothiodystrophy. Ophthalmology 2011;118:233542. Cross Ref link Pubmed link
  • 113  Viprakasit V, Gibbons RJ, Broughton BC, et al. Mutations in the general transcription factor TFIIH result in beta‐thalassaemia in individuals with trichothiodystrophy. Hum Mol Genet 2001;10:2797802. Cross Ref link Pubmed link
  • 114  Kraemer KH, Patronas NJ, Schiffmann R, et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype‐phenotype relationship. Neuroscience 2007;145:138896. Cross Ref link Pubmed link

Ataxia‐telangiectasia (Louis‐Bar syndrome)

  • 115  Boder E, Sedgwick RP. Ataxia‐telangiectasia. (Clinical and immunological aspects). Psychiatr Neurol Med Psychol Beih 1970;13/14:816.
  • 116  Chun HH, Gatti RA. Ataxia‐telangiectasia, an evolving phenotype. DNA Repair (Amst) 2004;3:118796. Cross Ref link Pubmed link
  • 117  Knoch J, Kamenisch Y, Kubisch C, Berneburg M. Rare hereditary diseases with defects in DNA‐repair. Eur J Dermatol 2012;22:44355. Pubmed link
  • 118  Taylor AM. Unrepaired DNA strand breaks in irradiated ataxia telangiectasia lymphocytes suggested from cytogenetic observations. Mutat Res 1978;50:40718. Cross Ref link Pubmed link
  • 119  Goodarzi AA, Noon AT, Deckbar D, et al. ATM signaling facilitates repair of DNA double‐strand breaks associated with heterochromatin. Mol Cell 2008;31:16777. Cross Ref link Pubmed link

Fanconi anaemia

  • 120  Deakyne JS, Mazin AV. Fanconi anemia: at the crossroads of DNA repair. Biochemistry 2011;76:3648. Pubmed link
  • 121  Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2001;2:44657. Cross Ref link Pubmed link
  • 122  Walden H, Deans AJ. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu Rev Biophys 2014;43:25778. Cross Ref link Pubmed link

Muir–Torre syndrome

  • 123  Muir EG, Bell AJY, Barlow KA. Multiple primary carcinoma of the colon, duodenum and larynx associated with keratoacanthoma of the face. Br J Surg 1967;54:191. Cross Ref link Pubmed link
  • 124  Torre D. Multiple sebaceous gland tumors. Arch Dermatol 1968;98:549. Cross Ref link Pubmed link
  • 125  Schwartz RA, Torre DP. The Muir–Torre syndrome: a 25 years retrospect. J Am Acad Dermatol 1995;33:90. Cross Ref link Pubmed link
  • 126  Ponti G, Ponz de Leon M. Muir–Torre syndrome. Lancet Oncol 2005;6:980. Cross Ref link Pubmed link
  • 127  Abbas O, Mahalingam M. Cutaneous sebaceous neoplasms as markers of Muir–Torre syndrome: a diagnostic algorithm. J Cutan Pathol 2009;36:61319. Cross Ref link Pubmed link